Development of Algorithmic, Graph-Based Techniques for the Automated Design of DNA Biosensors

MSU Denver, Undergraduate Research Conference
May 1, 2015

Aviva Bulow
Jody Stephens
Andrew J. Bonham
What's a Biosensor?

- Something, in this case DNA, used to detect biological or bioactive molecules.
- They are important for medicine and research.
Why DNA?

- DNA folds predictably.
- DNA can take many different shapes.
- DNA binds many important targets.
So What's the Big Idea?

- Designing a DNA biosensor by hand is considered cruel and unusual punishment in many states. Fealden solves this, here's how:

 - Binding Sequence
 - Auto Generation
 - Potential Sensors, folded. (1 fold per sensor is shown).
 - Viability Filtration
 - Viable Sensor
What was Fealden 1.0?

- Fealden 1.0 used the following assumptions to determine if biosensors were viable.

- This throws away many, sometimes superior biosensors, and is quite inflexible.
Can We Fix It?

- Yes We Can!! – with graph theory!
- Let's represent the DNA sequences as heterogeneous node-weighted graphs.
What's So Great About Graphs?

- We have no pre-conceived notions about what shape makes a good sensor.
- We have a flexible program.
What Have You Done?

• I have the graph!
• And a distance metric.

def construct_graph_SSLNode(self, currentNode, currentIndex):
 currentNode.set_start(currentIndex + 1)
 isLastNode = True
 length = 0
 for i, v in enumerate(self.foldData[currentIndex::]):
 if v[1] == 0:
 self.ptrList[i+currentIndex] = currentNode
 length = i + 1
 else:
 isLastNode = False
 currentNode.set_length(i)
 nextNode = None
 if self.ptrList[v[1] - 1] == None:
 nextNode = node.DSNode(currentNode)
 self.construct_graph_DSNode_strand1(nextNode, currentIndex + i)
 else:
 nextNode = self.ptrList[v[1] - 1]
 self.construct_graph_DSNode_strand2(nextNode, currentIndex + i, currentNode)
 currentNode.set_downstreamDSNode(nextNode)
 break
 if isLastNode:
 currentNode.set_length(length)
What's Left to Do?

- **Short Term.**
 - Finish distance metric
 - Validity Metrics.
 - Triage poor sensors.

- **Longer Term**
 - Graph “seed” for generation.
 - Add extra functionality discussed.
 - User friendly front end.
Wait, What?

- Biosensors detect important targets.
- DNA makes good biosensors.
- It's torture to design DNA biosensors by hand.
- Fealden automates DNA biosensor design.
- Fealden 2.0 uses graphs to add flexibility and functionality to the program.
- I have finished some important steps in revamping Fealden.
- I have even more left to do.
Who Can I Blame for This Talk?

- I would like to acknowledge Jody Stephens for his pioneering work on this project, and for recruiting me to work on something which is so much fun.

- I would like to thank Dr. Bonham for all the time, effort, encouragement, and ideas he has put into myself and this project.

- This work is in progress at MSU Denver, thanks Metro!